
Theory of Computation
Unit 1

DEFINITION OF AN AUTOMATON
An automaton is defined as a system where energy, materials and

information are transformed, transmitted and used for performing some
functions without direct participation of man.

● Examples are- automatic machine tools, automatic packing machines,
and automatic photo printing machines.

● In computer science the term 'automaton' means 'discrete automaton'

Characteristics of Automaton
● Input-

At each of the discrete instants of time t1, t2, …. tm the input values I1
I2..... Ip ,each of which can take a finite number of fixed values from
the input alphabet ⅀, are applied to the input side of the model shown
in Fig. 3.l.

● Output-
 01, O2,....., Oq are the outputs of the model, each of which can take a
finite number of fixed values from an output O.

Characteristics of Automaton
● States-

 At any instant of time the automaton can be in one of the states q1, q2,....,
qn

● State relation-
 The next state of an automaton at any instant of time is determined by
the present state and the present input.

● Output relation-
The output is related to either state only or to both the input and the
state. It should be noted that at any instant of time the automaton is in
some state. On 'reading' an input symbol, the automaton moves to a next
state which is given by the state relation.

● An automaton in which the output depends only on the input is called

an automaton without a memory.

● An automaton in which the output depends on the states as well is

called automaton with a finite memory.

● An automaton in which the output depends only on the states of the

machine is called a Moore machine.

● An automaton in. which the output depends on the state as well as on

the input at any instant of time is called a Mealy machine.

FINITE AUTOMATON
 Analytically, a finite automaton can be represented by a 5-tuple

(𝙌, ∑, 𝛅, 𝒒0, F) where

𝙌 : Finite set of states.

Σ : set of Input Symbols or called the input alphabet.

δ : Transition Function.

𝒒0 : Initial state where 𝒒0 𝝐 𝙌

F : set of Final States where F ⊆ 𝙌.

TRANSITION SYSTEMS
A transition graph or a transition system is a finite directed

labelled graph in which each vertex (or node) represents a state
and the directed edges indicate the transition of a state and

the edges are labelled with input/output.

Definition 3.1:

A transition system is a 5-tuple (𝙌, ∑, 𝛅, 𝒒0, F) where

𝙌 : Finite set of states.

Σ : set of Input Symbols or called the input alphabet.

𝒒0 : Initial state where 𝒒0 𝝐 𝙌
F : set of Final States where F ⊆ 𝙌
δ : Transition Function and a finite subset of 𝙌 x Σ* x 𝙌

If (𝒒1 , w, 𝒒2) is in δ, it means that the graph starts at the vertex 𝒒1 , goes along a set

of edges, and reaches the vertex 𝒒2.

The concatenation of the label of all the edges thus encountered is w.

Definition 3.2:
A transition system accepts a string w in ∑* if
(i) there exists a path which originates from some initial state, goes
along the arrows, and terminates at some final state; and
(ii) the path value obtained by concatenation of all edge-labels of the path
is equal to w.

∑={a,b}
L= set of strings ending with a

Strings accepted are,
a, aa, aaa, aaaa, aaaaa, ba, bba,
bbbaa, aba, abba, aaba, abaa

Strings not accepted are,
ab, bb, aab, abbb

Properties of transition functions
● Property 1:

δ(q,Λ) = q.
 It means the state of a system can be changed by an input symbol.

● Property 2:
For all strings w and input symbol a,
δ(q, aw) = δ(δ(q,a),w)
δ(q, wa) = δ(δ(q,w), a)

It means the state after the automaton consumes or reads the first symbol of a string
aw and the state after the automaton consumes a prefix of the string wa.

FINITE AUTOMATA CLASSIFICATION

DETERMINISTIC FINITE STATE MACHINES (DFA)

A deterministic finite automaton (DFA) is a 5-tuple (𝙌, ∑, 𝛅, 𝒒0, F) where

𝙌 : Finite set of states.

Σ : set of Input Symbols or called the input alphabet.

𝒒0 : Initial state where 𝒒0 𝝐 𝙌
F : set of Final States where F ⊆ 𝙌
δ : Transition Function, defined as δ : Q X Σ --> Q

DETERMINISTIC FINITE STATE MACHINES (DFA)

● For a particular input character, the machine goes to one state only.

● A transition function is defined on every state for every input symbol.

● Also in DFA null (or ε) move is not allowed, i.e., DFA cannot change

state without any input character.

DETERMINISTIC FINITE STATE MACHINES (DFA)

DETERMINISTIC FINITE STATE MACHINES (DFA)
1. Construct a DFA which accept a language of all strings ending with ‘a’.
Given: Σ = {a,b}, q = {q0}, F={q1}, Q = {q0, q1}

2. Construct a DFA which accept a language of all strings starting with ‘b’.
Given: Σ = {a,b}, q = {q0}, F={q1}, Q = {q0, q1,q2}

3. Draw a DFA for the language accepting strings containing 0

4. Draw a DFA for the language accepting strings starting and ending with
same character over input alphabets ∑ = {0, 1}

L = {a, aa, aaa, aaaa, aaaaa, ba, bba, bbbaa, aba, abba, aaba, abaa}...(hint)

L = {b, bb, bbb, ba, bba, bbbaa, bba, bbbab, bbba, baab, babab}...(hint)

DETERMINISTIC FINITE STATE MACHINES (DFA) soln

1. 3.

2. 4.

NON-DETERMINISTIC FINITE STATE MACHINES (NFA)
A nondeterministic finite automaton (NDFA) is a 5-tuple (𝙌, ∑, 𝛅, 𝒒0, F) where
𝙌 : Finite set of states.
Σ : set of Input Symbols or called the input alphabet.
𝒒0 : Initial state where 𝒒0 𝝐 𝙌
F : set of Final States where F ⊆ 𝙌
δ : Transition Function and a mapping from 𝙌 x Σ into 2𝙌 which is the
power set of 𝙌, the set of all subsets of 𝙌

NON-DETERMINISTIC FINITE STATE MACHINES (NFA)
● NFA is more of a theoretical concept.
● All real machines are DFA

NFA is similar to DFA except following additional features:
● Null (or ε) move is allowed i.e., it can move forward without reading

symbols.
● Ability to transmit to any number of states for a particular input.

If the number of states in the NFA is N then, its DFA can have maximum 2N
number of states.

NON-DETERMINISTIC FINITE STATE MACHINES (NFA)

NON DETERMINISTIC FINITE STATE MACHINES (NFA)
1. Construct a NFA which accept a language of all strings ending with ‘0’.
Given: Σ = {0,1}, q = {q0}, F={q1}, Q = {q0, q1}

2. Construct a DFA which accept a language of all strings containing ‘0’.
Given: Σ = {0,1}, q = {q0}, F={q1}, Q = {q0, q1}

3. Draw a DFA for the language accepting strings containing ‘01’

NON DETERMINISTIC FINITE STATE MACHINES (NFA) soln

1. 3.

2.

ACCEPTABILITY OF A STRING BY A FINITE
AUTOMATON
A string x is accepted by a finite automaton

M = (𝙌, ∑, 𝛅, 𝒒0, F)
if 𝛅(𝒒0, x) =𝒒 for some 𝒒 𝝐 F.

This is basically the acceptability of a string by the final state.

Note: A final state is also called an accepting state

ACCEPTABILITY OF A STRING BY A FINITE
AUTOMATON

 THE EQUIVALENCE OF DFA AND NDFA
The relation between DFA and NDFA is that:
1. A DFA can simulate the behaviour of NDFA by increasing the number of

states. (In other words a DFA (Q, L, 𝛅, qQ, F) can be viewed as an NDFA
(Q, L, 𝛅', qQ, F) by defining 𝛅'(q, a) = {𝛅(q, a)}.)

2. Any NDFA is a more general machine without being more powerful.

Conversion of NFA→DFA problems

MEALY AND MOORE MODELS
Mealy Machines:

Mealy machines are also finite state machines with output value and its output depends on
the present state and current input symbol.

It can be defined as (𝙌, q0, ∑, △, δ, λ’) where:
● 𝙌 is a finite set of states.
● q0 is the initial state.
● ∑ is the input alphabet.
● △ is the output alphabet.
● δ is the transition function which maps 𝙌 × ∑ → 𝙌.
● ‘λ’ is the output function that maps 𝙌 × ∑→ △.

MEALY AND MOORE MODELS
Mealy Machines:

Eg. 1 0 1 0

A→ A→ B→ B→ A
 b a a b

Length of input : 4 ⇒ n
Length of output : 4 ⇒ n

MEALY AND MOORE MODELS
Moore Machines:

They are finite state machines with output value and its output depends only on the
present state.

It can be defined as (𝙌, q0, ∑, △, δ, λ) where:
● 𝙌 is a finite set of states.
● q0 is the initial state.
● ∑ is the input alphabet.
● △ is the output alphabet.
● δ is transition function which maps 𝙌×∑ → 𝙌.
● λ is the output function which maps 𝙌 → 𝙌.

MEALY AND MOORE MODELS
Moore Machines:

Eg. 1 0 1 0

A→ A→ B→ A→ B
 a a b a b

Length of input : 4 ⇒ n
Length of output : 5 ⇒ n+1

FORMAL
LANGUAGES

Grammar
It is a finite set of formal rules for generating syntactically correct
sentences or meaningful correct sentences.

Formal Definition of Grammar :
Any Grammar can be represented by 4 tuples – (Vn, ∑, P, S)
 Vn => Finite Non-Empty Set of Non-Terminal Symbols.
∑ => Finite Set of Terminal Symbols.
P => Finite Non-Empty Set of Production Rules.
S => Start Symbol (Symbol from where we start producing our sentences or
strings).

DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

Consider Grammar G1 = (Vn, ∑, P, S)
N = {S, A} #Set of non-terminals Symbols
T = {a} #Set of terminal symbols
P = {A->Aa, A->AAa, A->a, A->ε} #Set of all production rules
S = {A} #Start Symbol

Language generated,
L(G)= set of strings starting with a

DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

Consider Grammar G1 = (Vn, ∑, P, S)
V ={S, A} #Set of non-terminal symbols
∑ = {0,1} #Set of terminal symbols
P = {A->A0,A->A1,A->0,A->1,A-> ε} #Set of all production rules
S = {A} #Start Symbol

Language generated,
L(G)= set of strings starting with a or b

DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

If G = ({S}, {0}, {S → SS}, S), find the language generated by G.

V={S}
∑ = {0}
P= {S →SS}
S={S}

Language generated,
L(G)= ɸ, since the only production S -> SS in G has no terminal on the
right-hand side.

DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

 Let G = ({S, A1, A2}, {a, b}, P, S), where P consists of
S → aA1A2a,
 A1 →baA1A2b,
A2 →A1ab,
 aA1 → baa,
bA2b → abab

Test whether w = baabbabaaabbaba is in L(G).

DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

1. If G is S → aS | bS | a | b, find L(G).
2. Let G = ({ S, C}, {a, b}, P, S), where P consists of S → aCa, C → aCa I b.

Find L(G).
3. Test whether 001100, 001010, 01010 are in the language generated by

the grammar S → OS1 | OA | 0 | 1B | 1, A→ OA | 0, B → 1B | 1
4. Find the language generated by the grammar S→ AB, A→A1 | 0, B→

2B | 3.

CHOMSKY CLASSIFICATION OF LANGUAGES

According to Chomsky hierarchy, grammar is
divided into 4 types as follows:

● Type 0 is known as unrestricted
grammar.

● Type 1 is known as context-sensitive
grammar.

● Type 2 is known as a context-free
grammar.

● Type 3 Regular Grammar.

CHOMSKY CLASSIFICATION OF LANGUAGES

Type 3 - Regular Grammar
➔ Generate regular languages
➔ Must have a single non-terminal on the left-hand side and a right-hand

side consisting of a single terminal or single terminal followed by a
single non-terminal.

➔ The productions must be in the form
X → a or X → aY

where X, Y ∈ N (Non terminal) & a ∈ T (Terminal)
➔ The rule S → ε is allowed if S does not appear on the

right side of any rule.
➔ Accepted by a finite-state automaton

CHOMSKY CLASSIFICATION OF LANGUAGES

Type 2 - Context-Free Grammar(CFG)
➔ Generate context-free languages
➔ The productions must be in the form

A → γ
where A ∈ N (Non terminal) & γ ∈ (T ∪ N)* (String of terminals and
non-terminals).

➔ Recognized by a Pushdown automata

CHOMSKY CLASSIFICATION OF LANGUAGES

Type 1 - Context- Sensitive Grammar (CSG)
➔ Generate context-sensitive languages.
➔ The productions must be in the form

α A β → α γ β
where A ∈ N (Non terminal) & α, β, γ ∈ (T ∪ N)* (String of terminals and
non-terminals).

➔ Recognized by a Linear Bound Automata

CHOMSKY CLASSIFICATION OF LANGUAGES

Type 0 - Unrestricted Grammar
➔ Generate recursively enumerable languages.
➔ Productions have no restrictions.
➔ Recognized by a Turing machine
➔ The productions can be in the form of

 α → β
where α ⇒ a string of terminals and nonterminals with at least one
non-terminal and α cannot be null.
β ⇒ a string of terminals and non-terminals.

RECURSIVE AND RECURSIVELY ENUMERABLE SETS

● Recursive
If L is a recursive language then −
➢ If w ∈ L then a TM halts in a final state,
➢ If w ∉ L then TM halts in a non-final state.

● Recursively Enumerable(RE)
If L is a recursive enumerable language then −
➢ If w ∈ L then a TM halts in a final state,
➢ If w ∉ L then a TM halts in a non-final state or loops forever.

RECURSIVE AND RECURSIVELY ENUMERABLE SETS

1. Consider the grammar G given by
S→0SA12,
S→ 012,
2A1 → A12,

 1A1 → 11

Test whether
(a) 00112 E L(G)
(b) 001122 E L(G).
(c) Type of grammar/language?
c-> A context-sensitive grammar/language is recursive.[after check for
strings in (a) and (b)]

RECURSIVE AND RECURSIVELY ENUMERABLE SETS

1. Consider the grammar G given by
S→0SA12,
S→ 012,
2A1 → A12,

 1A1 → 11

Test whether
(a) 00112 E L(G)
(b) 001122 E L(G).

SOLUTION

RECURSIVE AND RECURSIVELY ENUMERABLE SETS

1. Consider the grammar G given by
S→0SA12,
S→ 012,
2A1 → A12,

 1A1 → 11

Test whether
(a) 00112 E L(G)
(b) 001122 E L(G).

SOLUTION

OPERATIONS ON LANGUAGES
Kleene closure⇒∑* ⇒ the set of all possible strings of any length that can be
formed using the symbols in ∑.

1. Complement
Let L be a language over similar alphabet ∑
The complement of L is denoted by L’
Where L’ = ∑* - L

Eg
Let A = {0, 01} , ∑ ={0, 1}
∑* ={𝜺,0,1,00,01,000,001,111, 0101………}
Complement : A’ = ∑* - A

OPERATIONS ON LANGUAGES
2. Union
 Let L1 and L2 be two languages over a similar alphabet ∑
 The union of L1 and L2 is defined as:
 L3: A ∪ B = {w : w ∈ A or w ∈ B}
I.e for every string w ∈ Σ*, M accepts w ⇔ M1 accepts w or M2 accepts w

Eg.
Let A = {0, 01} and B = {1, 10}.
union: A ∪ B= {0, 01, 1, 10}

OPERATIONS ON LANGUAGES

3. Concatenation
 Let L1 and L2 be two languages over a similar alphabet ∑
 The concatenation of L1 and L2 is defined as:
 L3: AB = {ww′ : w ∈ A and w′ ∈ B}

I.e where AB is the set of all strings obtained by taking an arbitrary string w
in A and an arbitrary string w′ in B then putting them together such that
the former is to the left of the latter.

Eg.
Let A = {0, 01} and B = {1, 10}.
concatenation: AB = {01, 010, 011, 0110}

OPERATIONS ON LANGUAGES

4. Kleen closure
 Let L a language over a alphabet ∑
 The kleen closure of L is defined as:
 L* = {u1, u2, u3,.....,uk : k ≥ 0 and ui ∈ A for all i = 1, 2, ..., k}

Where A* is obtained by taking an infinite number of strings in A and
putting them together.
Note that k cannot be zero, in this case it will correspond to an empty
string ϵ and therefore ϵ ∈ A*.

Eg.
Let A = {0, 01}
kleen closure: A* = {ϵ, 0, 01, 00, 001, 010, 0101, 000, 0001, 00101, ...}

Asst. Prof. Jesica D’cruz

Asst. Prof. Jesica D’cruz

Regular Sets &
Regular Grammar

TOC- UNIT 2

Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
Regular Expressions are used to denote regular languages. An
expression is regular if:

● ɸ is a regular expression for regular language ɸ.

● ɛ is a regular expression for regular language {ɛ}.

● If a ∈ Σ (Σ represents the input alphabet), a is regular
expression with language {a}. I.e RE= a

● The union of two regular expressions R1 and R2 ,written as R1 +
R2, is also a regular expression. Eg L={a,b} then RE= a + b

Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
Regular Expressions are used to denote regular languages. An
expression is regular if:

● The concatenation of two regular expressions R1 and R2,
written as R1 R2, is also a regular expression.

Eg L={00, 10} then RE = (0 + 1) 0

● The iteration (or closure) of a regular expression R written as
R*, is also a regular expression.

Eg L={𝜺, 0, 00,000} then RE = 0*

Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar

Regular Expressions are used to denote regular languages. An
expression is regular if:

● If R is a regular expression, then (R) is also a regular
expression.

Eg: L={a} then RE= a or (a)

Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
Order of evaluation of regular expressions

● Parenthesis ⇒ (R)
● Iteration (closure) ⇒ R*
● Concatenation ⇒ R1 R2
● Union ⇒ R1 + R2

The parentheses used in Rule 5 influence the order of evaluation of a regular
expression.

In the absence of parentheses the hierarchy of operations as follows: iteration
(closure). concatenation, and union.

Precedence order decreases
from top to bottom

Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
● Regular Grammar :

A grammar is regular if it has rules of form A -> a or A -> aB or A -> ɛ where ɛ is
a special symbol called NULL.

● Regular Languages :

A language is regular if it can be expressed in terms of regular expression.

● Regular Sets :

Any set represented by a regular expression is called a regular set.

Asst. Prof. Jesica D’cruz

Exercise 1
Describe the following sets by regular expressions:

1) {101}
2) {abba},
3) {01, 10}
4) {A. ab}
5) {abb. a, b, bba}
6) {A, 0, 00, 000.... }
7) {1, 11 111,...... }.

Asst. Prof. Jesica D’cruz

Exercise 1 - Solution
Describe the following sets by regular expressions:

1) {101} ⇒ {101} is represented by 101

{1} and {0} are represented by 1 and 0 respectively.
101 is obtained by concatenating 1 0 and 1
So {101} is represented by 101.

2) {abba} ⇒ abba represents {abba}

3) {01, 10} ⇒ {01, 1O} represented by 01 + 10
As {01, 1O} is the union of {01} and {10}, we have 01 + 10

Asst. Prof. Jesica D’cruz

Exercise 1 - Solution
Describe the following sets by regular expressions:

4) {⋀, ab} ⇒ represented by A + ab

5) {abb. a, b, bba} ⇒ represented by abb + a + b + bba

6) {⋀, 0, 00, 000.... } ⇒ represented by 0*

7) {1, 11 111,...... } ⇒ represented by 1(1)* or 1+

Asst. Prof. Jesica D’cruz

Exercise 2
Describe the following sets by regular expressions:

(a) L 1 =the set of all strings of 0's and 1's ending in 00.

(b) L2 = the set of all strings of 0's and 1's beginning with 0
and ending with 1.

(c) L3 ={A, 11, 1111, 111111, ...}.

Asst. Prof. Jesica D’cruz

Exercise 2 - Solution
Describe the following sets by regular expressions:

(a) L 1 =the set of all strings of 0's and 1's ending in 00.

Solution: (0 + 1)* 00.

(b) L2 = the set of all strings of 0's and 1's beginning with 0
and ending with 1.

Solution: 0(0 + 1)* 1

(c) L3 ={A, 11, 1111, 111111, ...}. Solution: (11)*

Asst. Prof. Jesica D’cruz

IDENTITIES FOR REGULAR EXPRESSIONS

★ ∅ + R = R

★ ∅R = R∅ = ∅

★ ΛR = ΛR = R

★ Λ* = Λ and ∅* = Λ

★ R + R = R

★ R*R* = R*

★ RR* = R*R

★ (R*)* = R*

★ Λ + RR* = R* = Λ + R*R

★ (PQ)*P = P(QP)*

★ (P + Q)* = (P*Q*)* = (P* + Q*)*

★ (P + Q)R = PR + QR and
R(P + Q) = RP + RQ

Asst. Prof. Jesica D’cruz

Exercise

If R1 = (1 + 011)* which represents language of strings in which
every 0 is immediately followed by at least two 1 ’s.

Prove that the regular expression R2 = Λ + 1*(011)*(1* (011)*)* also
describes the same set of strings.

Asst. Prof. Jesica D’cruz

Exercise
If R1 = (1 + 011)* which
represents language of strings
in which every 0 is
immediately followed by at
least two 1 ’s.

Prove that the regular
expression R2 =A + 1*(011)*(1*
(011)*)* also describes the
same set of strings.

Solution

Asst. Prof. Jesica D’cruz

Exercise

1. Prove that P + PQ*Q =a*bQ* where P =b + aa*b and Q is any
regular expression.

2. Prove that (0*1*)* is the same as (0 + 1)*
3. Prove (1 + 00*1) + (1 + 00*1)(0 + 10*1)* (0 + 10*1) = 0*1(0 + 10*1)*

4. Prove the following identity: (a*ab + ba)*a* = (a + ab + ba)*

Asst. Prof. Jesica D’cruz

ARDEN’S THEOREM

Let P and Q be two regular expressions over ∑. If P
does not contain ∈, then the following equation in R,
namely R = Q + RP has a unique solution (i.e. one and

only one solution) given by R = QP*.

Asst. Prof. Jesica D’cruz

ARDEN’S THEOREM
1. proof R = QP* is the solution of R = Q + RP

R = Q + RP (i)
Now, replacing R by R = QP*, we get,
R = Q + QP*P

Taking Q as common,
R = Q(∈ + P*P) = QP*

(As we know that ∈ + R*R = R*). Hence proved. Thus, R = QP* is the
solution of the equation R = Q + RP.

Asst. Prof. Jesica D’cruz

ARDEN’S THEOREM
2. proof R = QP* is the unique solution of R = Q + RP
Let’s take this equation again:
R = Q + RP
Now, replace R by R = Q + RP,

R = Q + (Q + RP)P
 = Q + QP + RP2

Again, replace R by R = Q + RP :-

R = Q + QP + (Q + RP) P2

 = Q + QP + QP2 + RP3

Asst. Prof. Jesica D’cruz

ARDEN’S THEOREM
= Q + QP + QP2 + .. + QPn + RP(n+1)

Now, replace R by R = QP*, we get,

R = Q + QP + QP2 + .. + QPn+ QP*P(n+1)

Taking Q as common,

R = Q(∈ + P + P2 + .. + Pn + P*P(n+1) = QP* [As ∈ + P + P2 + .. +
Pn + P*P(n+1) represent the closure of P]

Thus, R = QP* is the unique solution of the equation R = Q + RP.

Asst. Prof. Jesica D’cruz

EXERCISES
1. Consider the transition system given in below figure.Prove that

the strings recognized are (a + a(b + aa)*b)* a(b + aa)* a.

Asst. Prof. Jesica D’cruz

EXERCISES
2. Prove that the finite automaton whose transition diagram is as
shown in shown figure accepts the set of all strings over the alphabet
{a, b} with an equal number of a's and b's, such that each prefix has
at most one more a than the b's and at most one more b than the a's.

Asst. Prof. Jesica D’cruz

EXERCISES
3. Find the regular expression corresponding to Figure.

Asst. Prof. Jesica D’cruz

Exercise: Convert RE to Finite state automata
Construct the finite automaton equivalent to the regular
expression
1. (0 + 1)*(00 + 11)(0 + 1)*
2. 10 + (0 + 11)0*1
3. (ab + c*)*b
4. (a + b)*abb.

Asst. Prof. Jesica D’cruz

PUMPING LEMMA
➔ It gives a method for pumping (generating) many substrings from a

given string.
➔ It gives necessary condition(s) to prove a set of strings is not regular.

If A is a Regular Language, then A has a Pumping Length 'P’ such that
any string ‘S” where |S| >= P may be divided into 3 parts S=xyz such
that the following conditions must be true:
(1) xyiz ∈ A for every i>=0
(2) IyI>0
(3) Ixyl <= P

Asst. Prof. Jesica D’cruz

APPLICATIONS OF PUMPING LEMMA

Asst. Prof. Jesica D’cruz

REGULAR EXPRESSION TO FSA

Convert Regular expression to FSA:
● (ab + a)*(aa + b)
● (a*b + b*a)*a
● a* + (ab + a)*
● a(a + b)*ab
● a*b + b*a
● (aa + b)*(bb + a)*

Asst. Prof. Jesica D’cruz

CLOSURE PROPERTY FOR REGULAR SETS
Any 2 regular languages L1 & L2 are closed under:
● Union
If L1 and If L2 are two regular languages, their union L1 U L2 will also be
regular.
● Intersection
If L1 and If L2 are two regular languages, their intersection L1 ∩ L2 will also be
regular.
● Concatenation
If L1 and If L2 are two regular languages, their concatenation L1.L2 will also be
regular.

Asst. Prof. Jesica D’cruz

CLOSURE PROPERTY FOR REGULAR SETS
Any 2 regular languages L1 & L2 are closed under:
● Kleene Closure
If L1 is a regular language, its Kleene closure L1* will also be regular.
● Complement
If L(G) is a regular language, its complement L'(G) will also be regular.
Complement of a language can be found by subtracting strings which are in
L(G) from all possible strings.
● Reversal
Given language L, LR is the set of strings whose reversal is in L.
Example: L = {0, 01, 100} LR = {0, 10, 001}

Asst. Prof. Jesica D’cruz

CONSTRUCTION OF A REGULAR GRAMMAR FROM DFA
& VICE VERSA

1. Construct a finite automaton recognizing L(G), where G is the grammar
S → aS I bA I b and A → aA I bS I a.

2. Construct Regular grammar from DFA

TURING MACHINE

UNIT 3

CONTENTS

• VARIATIONS OF TURING MACHINE

• DECIDABILITY & UNDECIDABILITY

• CHURCH TURING THESIS

• UNIVERSAL TURING MACHINE

• HALTING PROBLEM

2

VARIATIONS OF TURING MACHINE

3

1. Turing Machine with Stay option:
If instead of moving left or right on seeing an input, the head could also stay at
one position without moving anywhere i.e.

 f: Q × X --> Q × X × {Left_shift, Right_shift, Stay}

2. Turing Machine with Semi-infinite tape
Turing machine has an infinite input tape with extends in both the directions (left and
right) infinitely. So now if we restrict it to extend only in one direction and not in both
the directions, i.e., we make the tape to be semi infinite. Eg. FSA

NOTE: All variations of turing machine have the same power

VARIATIONS OF TURING MACHINE

4

3. Multi-track TM
A k-tack Turing machine (for some k>0) has k-tracks and one R/W head that reads
and writes all of them one by one. A k-track Turing Machine can be simulated by a
single track Turing machine

NOTE: All variations of turing machine have the same power

VARIATIONS OF TURING MACHINE

5

4. Multi tape

NOTE: All variations of turing machine have the same power

A Turing machine with several
tapes we call it a multi tape
Turing machine.

Every tape’s have their own
Read/Write head

VARIATIONS OF TURING MACHINE

6

5. Multi head

NOTE: All variations of turing machine have the same power

• A multi-head Turing machine
contains two or more heads to
read the symbols on the same
tape.

• In one step all the heads sense the
scanned symbols and move or
write independently.

• Multi-head Turing machine can be
simulated by single head Turing
machine.

DECIDABILITY & UNDECIDABILITY

• DECIDABLE LANGUAGE
1. A problem with two answers (Yes/No) is decidable if the corresponding

language is recursive. In this case, the language L is also called decidable.
2. All recursive languages are Turing decidable or decidable languages

• PARTIALLY DECIDABLE

1. All Recursively enumerable languages are partially decidable

and Turing recognizable

• UNDECIDABLE LANGUAGE
1. A problem language is undecidable if it is not decidable.
2. No Turing machine can be designed for that language

D ECID ABLITY TABLE

CHURCH’S TURING THESIS

1 0

• Originates from meaning of "COMPUTABLE"?

• Turing machines(precise definition) and λ-calculus(intutive notions) are

equivalent models of computation.

• Both were meant to say that any machine/algorithm that is recognized by their

machines they are computable.

• But as a standard way computable means problems that can be computable

by Turing machine

UNIVERSAL TURING MACHINE

1 1

1. A Turing machine is said to be universal Turing machine if it can accept:
• The input data, and
• An algorithm (description) for computing.

2. This is precisely what a general-purpose digital computer does. A digital
computer accepts a program written in high level language.

3. Thus, a general purpose Turing machine will be called a universal Turing
machine if it is powerful enough to simulate the behavior of any digital computer,
including any Turing machine itself.

4. Notation of universal turing machine

U={M, Σ | where M =>description of turing machine, and Σ =>input symbol }

HALTING PROBLEM

1 2

HALTING PROBLEM

1 3

	Slide 1: TURING MACHINE
	Slide 2: Contents
	Slide 3: Variations of Turing Machine
	Slide 4: Variations of Turing Machine
	Slide 5: Variations of Turing Machine
	Slide 6: Variations of Turing Machine
	Slide 7: DECIDABILITY & UNDECIDABILITY
	Slide 8: Decidablity table
	Slide 9
	Slide 10: Church’s Turing thesis
	Slide 11: UNIVERSAL TURING MACHINE
	Slide 12: HALTING PROBLEM
	Slide 13: HALTING PROBLEM

