
Theory of Computation
Unit 1



DEFINITION OF AN AUTOMATON
An automaton is defined as a system where energy, materials and 

information are transformed, transmitted and used for performing some 
functions without direct participation of man.

● Examples are- automatic machine tools, automatic packing machines, 
and automatic photo printing machines.

● In computer science the term 'automaton' means 'discrete automaton' 



Characteristics of Automaton
● Input-

At each of the discrete instants of time t1, t2, …. tm the input values I1 
I2..... Ip ,each of which can take a finite number of fixed values from 
the input alphabet ⅀, are applied to the input side of the model shown 
in Fig. 3.l.

● Output-
 01, O2,....., Oq are the outputs of the model, each of which can take a 
finite number of fixed values from an output O.



Characteristics of Automaton
● States-

 At any instant of time the automaton can be in one of the states q1, q2,...., 
qn

● State relation-
 The next state of an automaton at any instant of time is determined by 
the present state and the present input.

● Output relation- 
The output is related to either state only or to both the input and the 
state. It should be noted that at any instant of time the automaton is in 
some state. On 'reading' an input symbol, the automaton moves to a next 
state which is given by the state relation.



● An automaton in which the output depends only on the input is called 

an automaton without a memory. 

● An automaton in which the output depends on the states as well is 

called automaton with a finite memory.

●  An automaton in which the output depends only on the states of the 

machine is called a Moore machine. 

● An automaton in. which the output depends on the state as well as on 

the input at any instant of time is called a Mealy machine.



FINITE AUTOMATON
 Analytically, a finite automaton can be represented by a 5-tuple 

(𝙌, ∑, 𝛅, 𝒒0, F ) where

𝙌 : Finite set of states.

Σ : set of Input Symbols or called the input alphabet.

δ : Transition Function.

𝒒0 : Initial state where 𝒒0 𝝐 𝙌

F : set of Final States where F ⊆ 𝙌.



TRANSITION SYSTEMS
A transition graph or a transition system is a finite directed 

labelled graph in which each vertex (or node) represents a state 
and the  directed edges indicate the transition of a state and 

the edges are labelled with input/output.

 



Definition 3.1:

A transition system is a 5-tuple  (𝙌, ∑, 𝛅, 𝒒0, F ) where

𝙌 : Finite set of states.

Σ : set of Input Symbols or called the input alphabet.

𝒒0 : Initial state where 𝒒0 𝝐 𝙌
F : set of Final States where F ⊆ 𝙌
δ : Transition Function and a finite subset of 𝙌 x Σ* x 𝙌

If (𝒒1 , w, 𝒒2 ) is in δ, it means that the graph starts at the vertex  𝒒1 , goes along a set 

of edges, and reaches the vertex 𝒒2.

The concatenation of the label of all the edges thus encountered is w.



Definition 3.2:
A transition system accepts a string w in ∑* if
(i) there exists a path which originates from some initial state, goes
along the arrows, and terminates at some final state; and 
(ii) the path value obtained by concatenation of all edge-labels of the path 
is equal to w.

∑={a,b}
L= set of strings ending with a

Strings accepted are,
a, aa, aaa, aaaa, aaaaa, ba, bba, 
bbbaa, aba, abba, aaba, abaa

Strings not accepted are,
ab, bb, aab, abbb



Properties of transition functions
● Property 1: 

δ(q,Λ) = q.
 It means the state of a system can be changed by an input symbol.

● Property 2:
For all strings w and input symbol a,
δ(q, aw) = δ(δ(q,a),w)
δ(q, wa) = δ(δ(q,w), a)

It means the state after the automaton consumes or reads the first symbol of a string 
aw and the state after the automaton consumes a prefix of the string wa.



FINITE AUTOMATA CLASSIFICATION



DETERMINISTIC FINITE STATE MACHINES (DFA)

A deterministic finite automaton (DFA) is a 5-tuple (𝙌, ∑, 𝛅, 𝒒0, F )  where

𝙌 : Finite set of states.

Σ : set of Input Symbols or called the input alphabet.

𝒒0 : Initial state where 𝒒0 𝝐 𝙌
F : set of Final States where F ⊆ 𝙌
δ : Transition Function, defined as δ : Q X Σ --> Q



DETERMINISTIC FINITE STATE MACHINES (DFA)

● For a particular input character, the machine goes to one state only. 

● A transition function is defined on every state for every input symbol. 

● Also in DFA null (or ε) move is not allowed, i.e., DFA cannot change 

state without any input character. 



DETERMINISTIC FINITE STATE MACHINES (DFA)



DETERMINISTIC FINITE STATE MACHINES (DFA)
1. Construct a DFA which accept a language of all strings ending with ‘a’.
Given:  Σ = {a,b}, q = {q0}, F={q1}, Q = {q0, q1}

2. Construct a DFA which accept a language of all strings starting with ‘b’.
Given:  Σ = {a,b}, q = {q0}, F={q1}, Q = {q0, q1,q2}

3. Draw a DFA for the language accepting strings containing 0 

4. Draw a DFA for the language accepting strings starting and ending with 
same character over input alphabets ∑ = {0, 1} 

L = {a, aa, aaa, aaaa, aaaaa, ba, bba, bbbaa, aba, abba, aaba, abaa}...(hint)

L = {b, bb, bbb, ba, bba, bbbaa, bba, bbbab, bbba, baab, babab}...(hint)



DETERMINISTIC FINITE STATE MACHINES (DFA) soln

1. 3.

2. 4.



NON-DETERMINISTIC FINITE STATE MACHINES (NFA)
A nondeterministic finite automaton (NDFA) is a 5-tuple (𝙌, ∑, 𝛅, 𝒒0, F )  where
𝙌 : Finite set of states.
Σ : set of Input Symbols or called the input alphabet.
𝒒0 : Initial state where 𝒒0 𝝐 𝙌
F : set of Final States where F ⊆ 𝙌
δ : Transition Function and a mapping from 𝙌 x Σ into 2𝙌 which is the
power set of 𝙌, the set of all subsets of 𝙌



NON-DETERMINISTIC FINITE STATE MACHINES (NFA)
● NFA is more of a theoretical concept. 
● All real machines are DFA

NFA is similar to DFA except following additional features: 
● Null (or ε) move is allowed i.e., it can move forward without reading 

symbols. 
● Ability to transmit to any number of states for a particular input. 

If the number of states in the NFA is N then, its DFA can have maximum 2N 
number of states.



NON-DETERMINISTIC FINITE STATE MACHINES (NFA)



NON DETERMINISTIC FINITE STATE MACHINES (NFA)
1. Construct a NFA which accept a language of all strings ending with ‘0’.
Given:  Σ = {0,1}, q = {q0}, F={q1}, Q = {q0, q1}

2. Construct a DFA which accept a language of all strings containing ‘0’.
Given:  Σ = {0,1}, q = {q0}, F={q1}, Q = {q0, q1}

3. Draw a DFA for the language accepting strings containing  ‘01’



NON DETERMINISTIC FINITE STATE MACHINES (NFA) soln

1. 3.

2.



ACCEPTABILITY OF A STRING BY A FINITE 
AUTOMATON
A string x is accepted by a finite automaton

M =  (𝙌, ∑, 𝛅, 𝒒0, F ) 
if 𝛅(𝒒0, x) =𝒒 for some 𝒒 𝝐 F.

This is basically the acceptability of a string by the final state.

Note: A final state is also called an accepting state



ACCEPTABILITY OF A STRING BY A FINITE 
AUTOMATON





  THE EQUIVALENCE OF DFA AND NDFA
The relation between DFA and NDFA is that:
1. A DFA can simulate the behaviour of NDFA by increasing the number of 

states. (In other words a DFA (Q, L, 𝛅, qQ, F) can be viewed as an NDFA 
(Q, L, 𝛅', qQ, F) by defining 𝛅'(q, a) = {𝛅(q, a)}.)

2. Any NDFA is a more general machine without being more powerful.

Conversion of NFA→DFA problems



MEALY AND MOORE MODELS
Mealy Machines: 

Mealy machines are also finite state machines with output value and its output depends on 
the present state and current input symbol. 

It can be defined as (𝙌, q0, ∑, △, δ, λ’)  where:
● 𝙌 is a finite set of states.
● q0 is the initial state.
● ∑ is the input alphabet.
● △ is the output alphabet.
● δ is the transition function which maps 𝙌 × ∑ → 𝙌.
● ‘λ’ is the output function that maps 𝙌 × ∑→ △.



MEALY AND MOORE MODELS
Mealy Machines: 

Eg. 1 0 1 0

A→ A→ B→ B→ A
          b      a      a       b

Length of input : 4   ⇒ n
Length of output : 4 ⇒ n



MEALY AND MOORE MODELS
Moore Machines: 

They are finite state machines with output value and its output depends only on the 
present state. 

It can be defined as (𝙌, q0, ∑, △, δ, λ) where:
● 𝙌 is a finite set of states.
● q0 is the initial state.
● ∑ is the input alphabet.
● △ is the output alphabet.
● δ is transition function which maps 𝙌×∑ → 𝙌.
● λ is the output function which maps 𝙌 → 𝙌.



MEALY AND MOORE MODELS
Moore Machines: 

Eg. 1 0 1 0

A→ A→ B→ A→ B
  a     a      b      a       b

Length of input : 4 ⇒ n
Length of output : 5  ⇒ n+1



FORMAL 
LANGUAGES



Grammar
It is a finite set of formal rules for generating syntactically correct 
sentences or meaningful correct sentences.

Formal Definition of Grammar :
Any Grammar can be represented by 4 tuples – (Vn, ∑, P, S)
 Vn    => Finite Non-Empty Set of Non-Terminal Symbols.
∑    => Finite Set of Terminal Symbols.
P  => Finite Non-Empty Set of Production Rules.
S => Start Symbol (Symbol from where we start producing our sentences or 
strings).



DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

Consider Grammar G1 =  (Vn, ∑, P, S)
N = {S, A}                   #Set of non-terminals Symbols
T = {a}                    #Set of terminal symbols
P = {A->Aa, A->AAa, A->a, A->ε}    #Set of all production rules
S = {A}                    #Start Symbol

Language generated,
L(G)= set of strings starting with a 



DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

Consider Grammar G1 =  (Vn, ∑, P, S)
V ={S, A}                     #Set of non-terminal symbols                                                      
∑ = {0,1}                #Set of terminal symbols
P = {A->A0,A->A1,A->0,A->1,A-> ε}    #Set of all production rules
S = {A}                    #Start Symbol

Language generated,
L(G)= set of strings starting with a or b



DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

If G = ({S}, {0}, {S → SS}, S), find the language generated by G.

V={S}
∑ = {0}
P=  {S →SS}
S={S}

Language generated,
L(G)= ɸ, since the only production S -> SS in G has no terminal on the
right-hand side.



DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

 Let G = ({S, A1, A2},  {a, b}, P, S), where P consists of
S → aA1A2a,
 A1 →baA1A2b,
A2 →A1ab,
 aA1 → baa, 
bA2b → abab

Test whether w = baabbabaaabbaba    is in L(G).



DERIVATIONS AND THE LANGUAGE GENERATED
BY A GRAMMAR

1.   If G is S → aS | bS | a | b, find L(G).
2. Let G = ({ S, C}, {a, b}, P, S), where P consists of S → aCa,  C → aCa I b. 

Find L(G).
3. Test whether 001100, 001010, 01010 are in the language generated by 

the grammar  S → OS1 | OA | 0 | 1B | 1,  A→ OA | 0, B → 1B | 1
4. Find the language generated by the grammar S→ AB, A→A1 | 0,        B→ 

2B | 3.



CHOMSKY CLASSIFICATION OF LANGUAGES

According to Chomsky hierarchy, grammar is 
divided into 4 types as follows: 

● Type 0 is known as unrestricted 
grammar.

● Type 1 is known as context-sensitive 
grammar.

● Type 2 is known as a context-free 
grammar.

● Type 3 Regular Grammar.



CHOMSKY CLASSIFICATION OF LANGUAGES

Type 3 - Regular Grammar
➔ Generate regular languages 
➔ Must have a single non-terminal on the left-hand side and a right-hand 

side consisting of a single terminal or single terminal followed by a 
single non-terminal.

➔ The productions must be in the form 
X → a or X → aY

where X, Y ∈ N (Non terminal)     &  a ∈ T (Terminal)
➔ The rule S → ε is allowed if S does not appear on the 

right side of any rule.
➔  Accepted by a finite-state automaton



CHOMSKY CLASSIFICATION OF LANGUAGES

Type 2 - Context-Free Grammar(CFG)
➔ Generate context-free languages
➔ The productions must be in the form 

A → γ
where A ∈ N (Non terminal)  & γ ∈ (T ∪ N)* (String of terminals and 
non-terminals).

➔ Recognized by a Pushdown automata



CHOMSKY CLASSIFICATION OF LANGUAGES

Type 1 - Context- Sensitive Grammar (CSG)
➔ Generate context-sensitive languages.
➔ The productions must be in the form 

α A β → α γ β
where A ∈ N (Non terminal)  &  α, β, γ ∈ (T ∪ N)* (String of terminals and 
non-terminals).

➔ Recognized by a Linear Bound Automata



CHOMSKY CLASSIFICATION OF LANGUAGES

Type 0 - Unrestricted Grammar
➔ Generate recursively enumerable languages.
➔ Productions have no restrictions.
➔ Recognized by a Turing machine
➔ The productions can be in the form of 

                                                      α → β 
where α ⇒ a string of terminals and nonterminals with at least one 
non-terminal and α cannot be null. 
β ⇒ a string of terminals and non-terminals.



RECURSIVE AND RECURSIVELY ENUMERABLE SETS

● Recursive
If L is a recursive language then −
➢ If w ∈ L then a TM halts in a final state,
➢ If w ∉ L then TM halts in a non-final state.

● Recursively Enumerable(RE)
If L is a recursive enumerable language then −
➢ If w ∈ L then a TM halts in a final state,
➢ If w ∉ L then a TM halts in a non-final state or loops forever.



RECURSIVE AND RECURSIVELY ENUMERABLE SETS

1. Consider the grammar G given by 
S→0SA12, 
S→ 012, 
2A1 → A12,

         1A1 → 11

Test whether 
(a) 00112 E L(G) 
(b) 001122 E L(G).
(c)  Type of grammar/language?
c-> A context-sensitive grammar/language is recursive.[after check for 
strings in (a) and (b)]



RECURSIVE AND RECURSIVELY ENUMERABLE SETS

1. Consider the grammar G given by 
S→0SA12, 
S→ 012, 
2A1 → A12,

         1A1 → 11

Test whether 
(a) 00112 E L(G) 
(b) 001122 E L(G).

SOLUTION



RECURSIVE AND RECURSIVELY ENUMERABLE SETS

1. Consider the grammar G given by 
S→0SA12, 
S→ 012, 
2A1 → A12,

         1A1 → 11

Test whether 
(a) 00112 E L(G) 
(b) 001122 E L(G).

SOLUTION



OPERATIONS ON LANGUAGES
Kleene closure⇒∑* ⇒ the set of all possible strings of any length that can be 
formed using the symbols in ∑.

1. Complement 
Let L be a language over similar alphabet ∑
The complement of L is denoted by L’ 
Where L’ = ∑* - L

Eg
Let A = {0, 01} , ∑ ={0, 1}
∑* ={𝜺,0,1,00,01,000,001,111, 0101………}
Complement : A’ = ∑* - A



OPERATIONS ON LANGUAGES
2.    Union
         Let L1 and L2 be two languages over a similar alphabet ∑
        The union of L1 and L2 is defined as:
         L3: A ∪ B = {w : w ∈ A or w ∈ B}
I.e for every string w ∈ Σ*, M accepts w ⇔ M1 accepts w or M2 accepts w

Eg. 
Let A = {0, 01} and B = {1, 10}.
union: A ∪ B= {0, 01, 1, 10}



OPERATIONS ON LANGUAGES

3. Concatenation
         Let L1 and L2 be two languages over a similar alphabet ∑
        The concatenation of L1 and L2 is defined as:
         L3: AB = {ww′ : w ∈ A and w′ ∈ B}

I.e where AB is the set of all strings obtained by taking an arbitrary string w 
in A and an arbitrary string w′ in B then putting them together such that 
the former is to the left of the latter.

Eg. 
Let A = {0, 01} and B = {1, 10}.
concatenation: AB = {01, 010, 011, 0110}



OPERATIONS ON LANGUAGES

4.  Kleen closure
         Let L a language over a alphabet ∑
        The kleen closure of L is defined as:
         L* = {u1, u2, u3,.....,uk : k ≥ 0 and ui ∈ A for all i = 1, 2, ..., k}

Where A* is obtained by taking an infinite number of strings in A and 
putting them together.
Note that k cannot be zero, in this case it will correspond to an empty 
string ϵ and therefore ϵ ∈ A*.

Eg. 
Let A = {0, 01} 
kleen closure: A* = {ϵ, 0, 01, 00, 001, 010, 0101, 000, 0001, 00101, ...}



Asst. Prof. Jesica D’cruz

Asst. Prof. Jesica D’cruz

Regular Sets &
Regular Grammar

TOC- UNIT 2



Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
Regular Expressions are used to denote regular languages. An 
expression is regular if:

● ɸ is a regular expression for regular language ɸ.

● ɛ is a regular expression for regular language {ɛ}.

● If a ∈ Σ (Σ represents the input alphabet), a is regular 
expression with language {a}. I.e RE= a

● The union of two regular expressions R1 and R2 ,written as R1 + 
R2, is also a regular expression. Eg L={a,b} then RE= a + b



Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
Regular Expressions are used to denote regular languages. An 
expression is regular if:

● The concatenation of two regular expressions R1 and R2, 
written as R1 R2, is also a regular expression.

Eg L={00, 10} then RE = ( 0 + 1 ) 0

● The iteration (or closure) of a regular expression R written as 
R*, is also a regular expression. 

Eg L={𝜺, 0, 00,000} then RE = 0*



Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar

Regular Expressions are used to denote regular languages. An 
expression is regular if:

● If R is a regular expression, then (R) is also a regular 
expression.

Eg: L={a} then RE= a or (a)



Asst. Prof. Jesica D’cruz

Regular Expressions & Regular Grammar
Order of evaluation of regular expressions

● Parenthesis  ⇒ (R)
● Iteration (closure) ⇒ R*
● Concatenation  ⇒ R1 R2
● Union  ⇒ R1 + R2

The parentheses used in Rule 5 influence the order of evaluation of a regular 
expression. 

In the absence of parentheses the hierarchy of operations as follows: iteration 
(closure). concatenation, and union.

Precedence order decreases 
from top to bottom
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Regular Expressions & Regular Grammar
● Regular Grammar :

A grammar is regular if it has rules of form A -> a or A -> aB or A -> ɛ where ɛ is 
a special symbol called NULL.  

● Regular Languages :

A language is regular if it can be expressed in terms of regular expression.  

● Regular Sets :

Any set represented by a regular expression is called a regular set.



Asst. Prof. Jesica D’cruz

Exercise 1
Describe the following sets by regular expressions:

1) {101}
2) {abba},
3) {01, 10}
4) {A. ab}
5) {abb. a, b, bba}
6) {A, 0, 00, 000.... }
7) {1, 11 111,...... }.

 



Asst. Prof. Jesica D’cruz

Exercise 1 - Solution
Describe the following sets by regular expressions:

1) {101}  ⇒ {101} is represented by 101

{1} and {0} are represented by 1 and 0 respectively. 
101 is obtained by concatenating 1 0 and 1 
So {101} is represented by 101.

2) {abba} ⇒   abba represents {abba}

3) {01, 10} ⇒  {01, 1O} represented by 01 + 10
As {01, 1O} is the union of {01} and {10}, we have 01 + 10



Asst. Prof. Jesica D’cruz

Exercise 1 - Solution
Describe the following sets by regular expressions:

4) {⋀, ab} ⇒  represented by A + ab

5) {abb. a, b, bba} ⇒ represented by abb + a + b + bba

6) {⋀, 0, 00, 000.... } ⇒ represented by 0*

7) {1, 11 111,...... } ⇒ represented by 1(1)* or 1+

 



Asst. Prof. Jesica D’cruz

Exercise 2
Describe the following sets by regular expressions:

(a) L 1 =the set of all strings of 0's and 1's ending in 00.

(b) L2 = the set of all strings of 0's and 1's beginning with 0 
and ending with 1.

(c) L3 ={A, 11, 1111, 111111, ...}.
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Exercise 2 - Solution
Describe the following sets by regular expressions:

(a) L 1 =the set of all strings of 0's and 1's ending in 00.

Solution:  (0 + 1)* 00.

(b) L2 = the set of all strings of 0's and 1's beginning with 0 
and ending with 1.

Solution:  0(0 + 1)* 1 

(c) L3 ={A, 11, 1111, 111111, ...}.        Solution:  (11)*
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IDENTITIES FOR REGULAR EXPRESSIONS

★ ∅ + R = R

★ ∅R =  R∅ =  ∅ 

★ ΛR = ΛR = R

★ Λ* = Λ and ∅* = Λ

★ R + R = R

★ R*R* = R*

★ RR* = R*R

★ (R*)* =  R* 

★ Λ + RR* = R* =  Λ + R*R

★ (PQ)*P = P(QP)*

★ (P + Q)* = (P*Q*)* = (P* + Q*)*

★ (P + Q)R = PR + QR and             
R(P + Q) = RP + RQ
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Exercise

If R1 = (1 + 011)* which represents language of strings in which 
every 0 is immediately followed by at least two 1 ’s. 

Prove that the regular expression R2 = Λ + 1*(011)*(1* (011)*)* also 
describes the same set of strings.
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Exercise
If R1 = (1 + 011)* which 
represents language of strings 
in which every 0 is 
immediately followed by at 
least two 1 ’s. 

Prove that the regular 
expression R2 =A + 1*(011)*(1* 
(011)*)* also describes the 
same set of strings.

Solution
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Exercise

1. Prove that P + PQ*Q =a*bQ* where P =b + aa*b and Q is any 
regular expression.

2. Prove that (0*1*)* is the same as  (0 + 1)*
3. Prove (1 + 00*1) + (1 + 00*1)(0 + 10*1)* (0 + 10*1) = 0*1(0 + 10*1)*

4. Prove the following identity:  (a*ab + ba)*a* = (a + ab + ba)*



Asst. Prof. Jesica D’cruz

ARDEN’S THEOREM

Let P and Q be two regular expressions over ∑. If P 
does not contain ∈, then the following equation in R, 
namely R = Q + RP has a unique solution (i.e. one and 

only one solution) given by R = QP*.
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ARDEN’S THEOREM
1. proof R = QP* is the solution of R = Q + RP

R = Q + RP  ......(i)
Now, replacing R by R = QP*, we get,
R = Q + QP*P 

Taking Q as common,
R = Q( ∈ + P*P) = QP*  

(As we know that ∈ + R*R = R*). Hence proved. Thus, R = QP* is the 
solution of the equation R = Q + RP.
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ARDEN’S THEOREM
2. proof R = QP* is the unique solution of R = Q + RP
Let’s  take this equation again:
R = Q + RP
Now, replace R by R = Q + RP,

R = Q + (Q + RP)P
    = Q + QP + RP2

Again, replace R by R = Q + RP :-

R = Q + QP + (Q + RP) P2 

    = Q + QP + QP2 + RP3 
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ARDEN’S THEOREM
=  Q + QP + QP2 + .. + QPn + RP(n+1)

Now, replace R by R = QP*, we get,

R = Q + QP + QP2 + .. + QPn+ QP*P(n+1)

Taking Q as common,

R = Q( ∈ + P + P2 + .. + Pn + P*P(n+1)  = QP*    [As ∈ + P + P2 + .. + 
Pn + P*P(n+1)  represent the closure of P] 

Thus, R = QP* is the unique solution of the equation R = Q + RP.
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EXERCISES
1. Consider the transition system given in below figure.Prove that 

the strings recognized are (a + a(b + aa)*b)* a(b + aa)* a.
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EXERCISES
2. Prove that the finite automaton whose transition diagram is as 
shown in shown figure accepts the set of all strings over the alphabet 
{a, b} with an equal number of a's and b's, such that each prefix has 
at most one more a than the b's and at most one more b than the a's.
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EXERCISES
3. Find the regular expression corresponding to Figure.
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Exercise: Convert RE to Finite state automata
Construct the finite automaton equivalent to the regular 
expression
1. (0 + 1)*(00 + 11)(0 + 1)*
2. 10 + (0 + 11)0*1
3. (ab + c*)*b
4. (a + b)*abb.
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PUMPING LEMMA
➔ It gives a method for pumping (generating) many substrings from a 

given string.
➔ It gives necessary condition(s) to prove a set of strings is not regular.

If A is a Regular Language, then A has a Pumping Length 'P’ such that 
any string ‘S” where |S| >= P may be divided into 3 parts S=xyz such 
that the following conditions must be true:
(1) xyiz ∈ A for every i>=0
(2) IyI>0
(3) Ixyl <= P
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APPLICATIONS OF PUMPING LEMMA
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REGULAR EXPRESSION TO FSA

Convert Regular expression to FSA:
● (ab + a)*(aa + b)
● (a*b + b*a)*a
● a* + (ab + a)*
● a(a + b)*ab
● a*b + b*a
● (aa + b)*(bb + a)*
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CLOSURE PROPERTY FOR REGULAR SETS
Any 2 regular languages L1 & L2  are closed under:
● Union
If L1 and If L2 are two regular languages, their union L1 U L2 will also be 
regular.
● Intersection
If L1 and If L2 are two regular languages, their intersection L1 ∩ L2 will also be 
regular.
● Concatenation
If L1 and If L2 are two regular languages, their concatenation L1.L2 will also be 
regular.
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CLOSURE PROPERTY FOR REGULAR SETS
Any 2 regular languages L1 & L2  are closed under:
● Kleene Closure
If L1 is a regular language, its Kleene closure L1* will also be regular.
● Complement
If L(G) is a regular language, its complement L'(G) will also be regular. 
Complement of a language can be found by subtracting strings which are in 
L(G) from all possible strings.
● Reversal
Given language L, LR is the set of strings whose reversal is in L.
Example: L = {0, 01, 100}     LR = {0, 10, 001}
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CONSTRUCTION OF A REGULAR GRAMMAR FROM DFA 
& VICE VERSA

1. Construct a finite automaton recognizing L(G), where G is the grammar 
S → aS I bA I b and A → aA I bS I a.

2. Construct Regular grammar from DFA
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VARIATIONS OF TURING MACHINE

3

1. Turing Machine with Stay option:
If instead of moving left or right on seeing an input, the head could also stay at 
one position without moving anywhere i.e.

          f: Q × X --> Q × X × {Left_shift, Right_shift, Stay}

2. Turing Machine with Semi-infinite tape
Turing machine has an infinite input tape with extends in both the directions (left and 
right) infinitely. So now if we restrict it to extend only in one direction and not in both 
the directions, i.e., we make the tape to be semi infinite. Eg. FSA

NOTE:  All variations of turing machine have the same power
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3. Multi-track TM
A k-tack Turing machine (for some k>0) has k-tracks and one R/W head that reads 
and writes all of them one by one. A k-track Turing Machine can be simulated by a 
single track Turing machine

NOTE:  All variations of turing machine have the same power
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4. Multi tape

NOTE:  All variations of turing machine have the same power

A Turing machine with several 
tapes we call it a multi tape 
Turing machine.

Every tape’s have their own 
Read/Write head



VARIATIONS OF TURING MACHINE
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5. Multi head

NOTE:  All variations of turing machine have the same power

• A multi-head Turing machine 
contains two or more heads to 
read the symbols on the same 
tape.

• In one step all the heads sense the 
scanned symbols and move or 
write independently. 

• Multi-head Turing machine can be 
simulated by single head Turing 
machine.



DECIDABILITY & UNDECIDABILITY

• DECIDABLE LANGUAGE
1. A problem with two answers (Yes/No) is decidable if the corresponding 

language is recursive. In this case, the language L is also called decidable.
2. All recursive languages are Turing decidable or decidable languages

• PARTIALLY DECIDABLE

1. All Recursively enumerable languages are partially decidable 

and Turing recognizable

• UNDECIDABLE LANGUAGE
1. A problem language is undecidable if it is not decidable.
2. No Turing machine can be designed for that language
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CHURCH’S TURING THESIS

1 0

• Originates from meaning of "COMPUTABLE"?

• Turing machines(precise definition) and λ-calculus(intutive notions) are 

equivalent models of computation.

• Both were meant to say that any machine/algorithm that is recognized by their 

machines they are computable.

• But as a standard way computable means problems that can be computable 

by Turing machine



UNIVERSAL TURING MACHINE
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1. A Turing machine is said to be universal Turing machine if it can accept:
• The input data, and
• An algorithm (description) for computing.

2. This is precisely what a general-purpose digital computer does. A digital 
computer accepts a program written in high level language. 

3. Thus, a general purpose Turing machine will be called a universal Turing 
machine if it is powerful enough to simulate the behavior of any digital computer, 
including any Turing machine itself.

4. Notation of universal turing machine

U={M, Σ | where M =>description of turing machine, and Σ =>input symbol }
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